Estimating Policy Effects in a Social Network with Independent Set Sampling

Eugene Ang¹

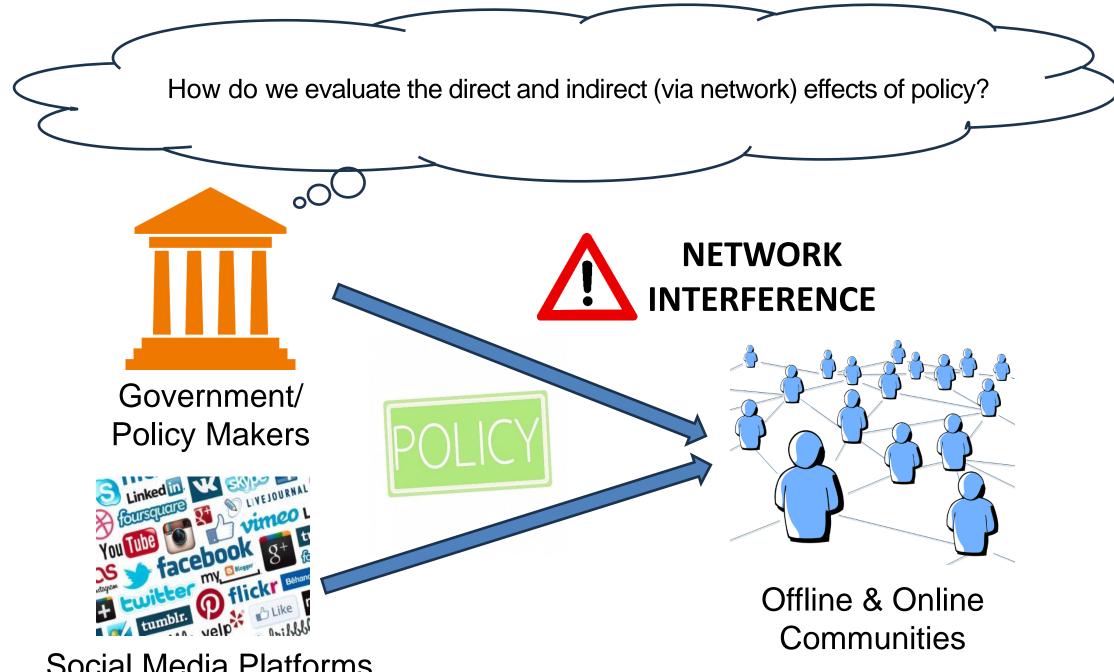
Prasanta Bhattacharya²

Andrew Lim^{1,2}

INFORMS 2023 October 17th 2023

¹ Institute of Operations Research and Analytics (IORA), National University of Singapore (NUS)

² Department of Analytics and Operations (DAO), NUS Business School



Social Media Platforms

Policy Evaluation Approaches

- Use (quasi) experimental approaches or conduct RCT on a group of people in the population (Coly 2017, White 2017)
 - Affected by network interference and other network-related confounders, such as homophily
- Require appropriate and efficient sampling methods (Olsen 2013)
 - Risk of network interference "within" the treatment and non treatment groups

Network Interference

- Network interference could affect how policies influence the behaviors of the people in the communities, and how their relationships could influence the effect of the policies.
 - Isolate the "direct" effect of the policy change from any "indirect" effect of the policy change via network influence

2. Find the "net" treatment effect of a policy change in the presence of homophily and network influence in the population.

Current Approaches

- 1. Random Selection with Naïve linear regression (e.g., Porter 1981)
 - Regress on observable covariates to explain the policy effects
- 2. Linear-in-means model (e.g., Manski 1993, Kline 2012)
 - Use aggregated values of nodes' neighbors as instrumental variables to explain peer effect
- 3. Graph clustering selection (e.g., Ugander 2013)
 - Sample random clusters in network for external test exposure
- 4. ERGM / Co evolution model (e.g., Wasserman 1996, Snijders 2007)
 - Model social network structures through specified statistics and properties

Why should we care?

- 1. Presence of network interference within treatment groups and across groups within network
- 2. Bias could over / under correct the policy effect
 - Estimation of policy influence is generally confounded with homophily
 - Better manage the resources for the policy implementation
- 3. Current approaches have certain limitations
 - Econometric approaches: Cannot guarantee the strength of IVs, and might fail for certain network structures
 - Cluster sampling: Vulnerable to network interference "within" sampled clusters

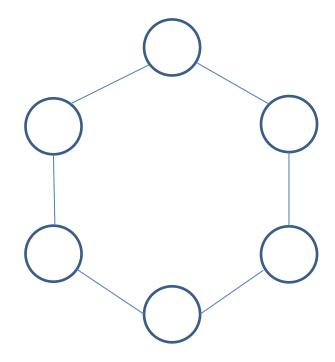
Proposed Methodology

Combines existing work in stochastic actor-oriented models (SAOM) & diffusion contagion models with *independent set sampling technique*

So, what is an independent set?

Independent Set

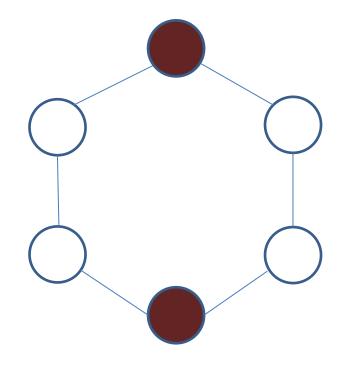
Definition: A set of vertices S is called an independent set if no two vertices in this set S are adjacent to each other



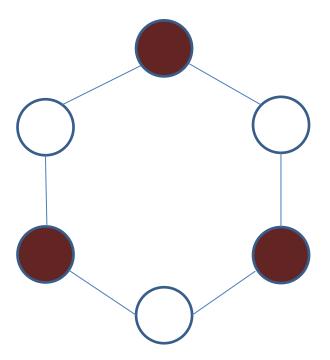
Let's call this graph G, technically it's C₆. Let construct some independent set S

Independent Set

Definition: A set of vertices S is called an independent set if no two vertices in this set S are adjacent to each other



This is one possible S. It is a **maximal** independent set.



This is another possible S. It is a **maximum** independent set.

Bounds

Let G = (V, E), |V| = n, |E| = e, d_v be degree of vertex v, Δ is the maximum degree, $\alpha(G)$ is the size of the maximum independent size

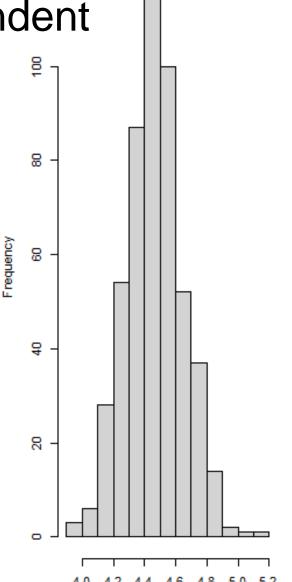
Theorem (Kwok):
$$\alpha(G) \leq n - \frac{e}{\Delta}$$

Theorem (Caro – Wei):
$$\alpha(G) \geq \sum_{v \in V} \frac{1}{1+d_v}$$

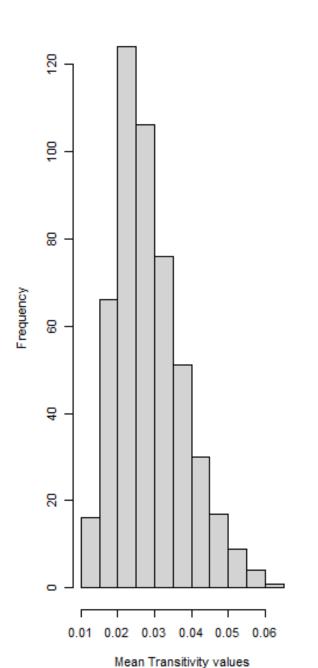
Guarantee on the size of the largest independent set sample

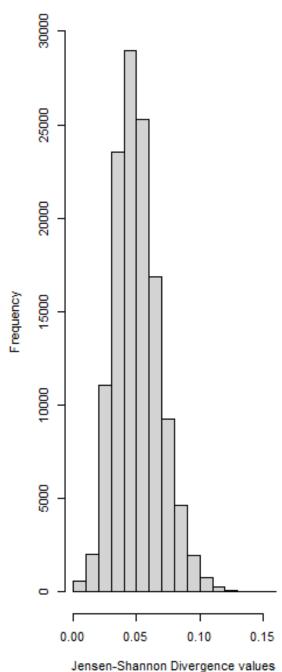
• Flexible to choose a suitable sample size given their resource constraints and objective

Structural Statistics of Maximal Independent Sets



Mean Degree values





Mean Degree: 4.466

Mean Transitivity: 0.028

Jenson-Shannon

Divergence: 0.049

Why use independent set sampling?

- Social networks are known to be sparse and have bounded degree
 - Independent sets can be used to sample large numbers of nodes relatively efficiently
- Obtain a more representative sample of a network
 - Ensure that the sample is not overly influenced by the presence of dense subgraphs in the original network
- Eliminate interactions within sample groups and isolate policy effects
 - Through such construction, it avoids selecting connected groups of nodes, so it reduces the chances of treatment spill-over in any such sample from the network
- Better identification of network formation within sample (due to policy change)
 - Since the sample is isolated by construction, any network formation can be attributed to homophily of being exposed to treatment (or due to chance)

So, the plan is...

- 1. For a given network, we find an independent set, cluster sample and random sample to be exposed to the treatment
- 2. Simulate the joint evolution of the network and behavior using a stochastic coevolution model
- 3. Obtain estimates for homophily and influence; compare across the 3 samples
- 4. On top of it, we use a second order difference approach to measure policy treatment effect

Simulation Study

- Want to investigate the effects on focal behavior due to the policy
- Use a popular dataset accessed from the wooldridge package in R (with random assignment on gender)
- Model changes in focal behavior using a logistic regression based on individual covariates (policy – increase price level of goods)
- Create 3 waves (4 stages) to simulate evolution
 - Initialize random scale free network
 - 2. Choose an independent set sample/random sample/cluster sample with small noise
 - 3. Change behavior according to logistic regression (no change in network)
 - 4. Parameterize the evolution based on certain probabilities of change

SAOM

- Jointly model the co evolution of networks and behaviors using a CTMC
- At every micro-step, there is at most one change in the respondents' focal behavior or the edges in the network
- Model the opportunities to form/delete tie or focal behavior to follow a Poisson process with different rate functions
- Individuals optimize own's objective function to determine specific changes in network or behavior
 - Evaluation function: Measure each respondent's utility
 - Endowment function: Capture loss in utility loss in ties or behavior which is gained earlier
 - Noise function: Represent a portion of respondent's preference

SAOM for our study

- Assume loss in utility is equal to respondent's earlier gain. No endowment function
- Model rate and objective functions with network statistics such as
 - 1. Degree
 - 2. Transitivity
 - 3. Homophily based on the respondent's covariates (focal behavior and price)

and behavioral statistics such as

- 1. Similarity measure
- 2. Behavioral tendency effect
- 3. Peer influence effect

Note: these are not exhaustive, and exact selection will depend on the specific problem context

Stronger homophilous effect

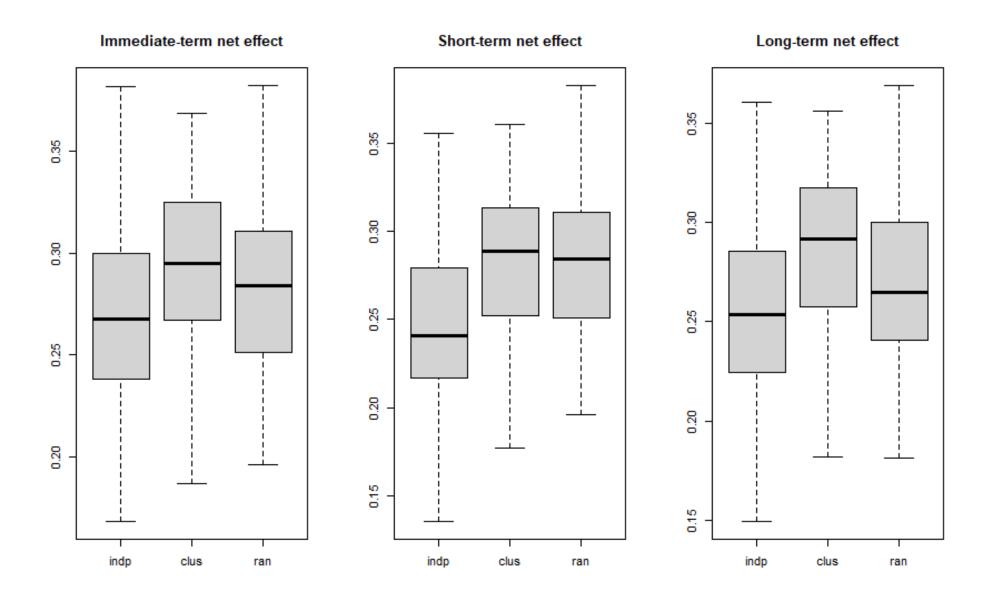
Estin	nates, standard errors			
Network Dynamics		Independent	Random	Cluster
1	Friendship rate (Period 1)	0.0067** (0.0047)	0.0065** (0.0047)	0.0064** (0.0046)
2	Friendship rate (Period 2)	0.1000 (NA)	0.1000 (NA)	0.1000 (NA)
3	Friendship rate (Period 3)	0.0302*** (0.0099)	0.0101* (0.0057)	0.0234** (0.0059)
4	Transitivity	-1.9489 (1.0932)	0.4378 (0.5195)	-0.2196 (0.5550)
5	Behavior homophily	2.2641* (1.3203)	1.1380 (1.3819)	2.0268 (1.3823)
6	Policy exposure homophily	3.4221* (2.0459)	1.6874 (2.6559)	1.8289 (1.9251)
Behavior Dynamics				
7	Behavior rate (Period 1)	0.1000 (NA)	0.1000 (NA)	0.1000 (NA)
8	Behavior rate (Period 2)	0.9382*** (0.1326)	0.7567*** (0.0975)	0.6685*** (0.1015)
9	Behavior rate (Period 3)	0.0651 (0.0384)	0.1000 (NA)	0.0344 (0.0244)
10	Behavior Tendency (Linear Shape)	-3.7529*** (0.7474)	-3.4438*** (1.0649)	-3.8396 (4.1641)
11	Average Peer Influence	0.1394 (1.5125)	-1.9052 (1.8527)	2.4923 (5.3836)
12	Outdegree	0.0693 (0.0612)	0.0439 (0.0296)	0.0488 (0.1597)

- A higher price level serves as a proxy for being included in the treatment set
- Observe a higher homophily based on focal behaviour and price level for independent set

Estimating treatment effect

- Compute differences in the proportion of individuals having the focal behavior in both the treatment and non-treatment groups
- Track the difference estimates over 4 time periods
 - (A) Before the policy implementation
 - (B) Right after the policy implementation
 - (C) After one wave of simulated evolution
 - (D) Future epochs of the predicted networks based on SAOM
- Immediate term net treatment effect: B-A
 - Short-term net treatment effect: C-A
 - Long-term net treatment effect: D-A

Direct and net treatment effect of policy



Key findings

- 1. Through independent set sampling, we eliminate any network interference within the treatment group
 - Decouple direct and indirect policy effects in the immediate term
 - Leads to better estimation of the treatment effect
 - Smaller policy treatment effect in the immediate and short term
- 2. Tendency for respondents to form ties with others who have similar focal behavior, especially with those in the same treatment group
- 3. Policy makers can spend less resources by exposing the policy on an independent sample and let the network do the work

Future Work

- 1. What if we obtain a weakly independent set sample due to incomplete data/unobservable links?
- 2. Do size/certain centrality measures in the independent set affect the speed of influence/coverage?
- 3. Since the construction of independent set is affected by the graph structure, how would different graph structure affect the effectiveness of such sampling?
- 4. Which is the "best" independent set to use, in terms of cost of policy implementation or rate of coverage?

Thank you. Any questions?

Eugene Ang

eugene.ang@u.nus.edu

https://arxiv.org/abs/2306.14142